MDL Convergence Speed for Bernoulli Sequences ∗ Jan Poland and Marcus Hutter
نویسنده
چکیده
The Minimum Description Length principle for online sequence estimation/prediction in a proper learning setup is studied. If the underlying model class is discrete, then the total expected square loss is a particularly interesting performance measure: (a) this quantity is finitely bounded, implying convergence with probability one, and (b) it additionally specifies the convergence speed. For MDL, in general one can only have loss bounds which are finite but exponentially larger than those for Bayes mixtures. We show that this is even the case if the model class contains only Bernoulli distributions. We derive a new upper bound on the prediction error for countable Bernoulli classes. This implies a small bound (comparable to the one for Bayes mixtures) for certain important model classes. We discuss the application to Machine Learning tasks such as classification and hypothesis testing, and generalization to countable classes of i.i.d. models.
منابع مشابه
MDL Convergence Speed for Bernoulli Sequences ∗ Jan Poland and Marcus
The Minimum Description Length principle for online sequence estimateion/prediction in a proper learning setup is studied. If the underlying model class is discrete, then the total expected square loss is a particularly interesting performance measure: (a) this quantity is finitely bounded, implying convergence with probability one, and (b) it additionally specifies the convergence speed. For M...
متن کاملMDL Convergence Speed for Bernoulli Sequences
The Minimum Description Length principle for online sequence estimation/prediction in a proper learning setup is studied. If the underlying model class is discrete, then the total expected square loss is a particularly interesting performance measure: (a) this quantity is finitely bounded, implying convergence with probability one, and (b) it additionally specifies the convergence speed. For MD...
متن کاملOn the Convergence Speed of MDL Predictions for Bernoulli Sequences
We consider the Minimum Description Length principle for online sequence prediction. If the underlying model class is discrete, then the total expected square loss is a particularly interesting performance measure: (a) this quantity is bounded, implying convergence with probability one, and (b) it additionally specifies a rate of convergence. Generally, for MDL only exponential loss bounds hold...
متن کاملTitle MDL convergence speed for Bernoulli sequences
The Minimum Description Length principle for online sequence estimateion/prediction in a proper learning setup is studied. If the underlying model class is discrete, then the total expected square loss is a particularly interesting performance measure: (a) this quantity is finitely bounded, implying convergence with probability one, and (b) it additionally specifies the convergence speed. For M...
متن کاملStrong Asymptotic Assertions for Discrete MDL in Regression and Classification
We study the properties of the MDL (or maximum penalized complexity) estimator for Regression and Classification, where the underlying model class is countable. We show in particular a finite bound on the Hellinger losses under the only assumption that there is a “true” model contained in the class. This implies almost sure convergence of the predictive distribution to the true one at a fast ra...
متن کامل